Idaho State Police Forensic Services Trace Discipline Section I Recovery, Analysis and the Identification of Ignitable Liquid Residues from Fire Evidence Samples #### 1.1 BACKGROUND The analysis of evidence from fires of suspicious origin encompasses a variety of sample types. The submitted samples may include burnt fire debris and liquids recovered at the fire scene, the suspect's clothing, or ignitable liquids found in the suspect's possession. The examination of the evidence may involve only an identification of ignitable liquid/residue present or it may involve the comparison of a liquid recovered at the scene with a liquid recovered from the suspect. Establishing the presence of an ignitable liquid residue in burnt debris recovered from a fire scene is an important investigative tool for the investigator tasked with establishing the cause and origin of a fire. The techniques used to recover the ignitable residue in debris are complicated by the large contribution of the vast variety of materials that are concurrently subjected to the fire process. The goal of this recovery process is to produce an extract as free from interferences as possible yet still recover a good representation of any ignitable liquid product present. Other considerations include The analysis of recovered vapors and/or recovery techniques that are sensitive and efficient. extracts by gas chromatograph equipped with a mass spectrometer not only provides an analytical tool to identify the ignitable liquid present but also the capability to use characteristic ions in extracted ion profiling to identify ignitable liquid residues when high background levels of substrate materials or pyrolysis products are present. The presence of an ignitable liquid residue in fire debris or on a suspect's clothing should be considered in the context of the circumstances surrounding the fire. #### 1.2 SCOPE This method details the recovery, analysis, identification and reporting of ignitable liquids/residues from fire evidence samples as well as the care of the instrumentation utilized. Recovery is by heated headspace, passive headspace adsorption with activated charcoal strips (ACS) and/or solvent extraction. Analysis of the resulting extract is performed on a gas chromatograph equipped with a mass selective detector. The identification by GC-MSD is based on the interpretation of data provided in accordance with the outlined criteria for identification. The practice of recovery with two ACS allows for one of the ACS to be placed with the evidence upon completion of analysis to be available for reanalysis. This method is based upon appropriate American Society for Testing and Materials (ASTM) standard test methods and practices. #### 1.3 FIRE EVIDENCE HANDLING - 1.3.1 Fire Evidence Containers - 1.3.1.1 Fire evidence must be submitted in clean, airtight containers. - 1.3.1.2 Debris samples and clothing must be packaged in a friction lid can and/or Kapak[®] or comparable heat sealable pouch material. - 1.3.1.3 Glass vials should be used for liquids suspected of being or containing an ignitable liquid. The glass vial must be submitted in a friction lid can or heat sealable pouch material to prevent the contents of the vial from contaminating adjacent samples. - 1.3.1.4 Items not properly packaged may be repackaged and/or not analyzed due to contamination issues. When the packaging has clearly compromised the integrity of the evidence, the sample(s) should not be analyzed. - 1.3.2 Fire Evidence Storage - 1.3.2.1 Fire evidence must not be stored near a heat source. - 1.3.2.2 Fire evidence said to contain substrate materials likely to contribute to the degradation of petroleum products such as manure, vegetation and/or soil, should be refrigerated or frozen until analysis. - 1.3.3 <u>Description of Fire Evidence</u> - 1.3.3.1 On fire evidence worksheet, the analyst should note the type of container, whether the seals are intact, a brief description of the sample and any obvious ignitable liquid product odor. - 1.3.3.2 When discornable, the nature of the substrate (carpet, wood, plastic, etc.) should be included in the description. - 1.3.4 Recovery Method Approach - Headspace sampling (1.4.1) should be done based on obvious/significant odors and/or case scenario. Based on headspace sampling data, additional techniques (1.4.2 and 1.4.3) may be indicated. - 1.3.4.2 If headspace sampling is not warranted, the scheme should begin with recovery by passive headspace concentration with activated charcoal (1.4.2). Refer to analysis scheme on page 4 for options. - 1.4 RECOVERY METHODS - 1.4.1 Separation of Ignitable Liquid Residues from Fire Evidence Samples by Headspace Sampling - 1.4.1.1 General - 1.4.1.1.1 This method serves to recover ignitable liquid residues from samples submitted as evidence in fire investigations. - 1.4.1.1.2 This method involves sampling vapors in the headspace of a fire evidence collection container. ### 1.4.1.2 ASTM Reference Method Refer to ASTM standard practice E 1388-00, Standard Practice for Sampling of Headspace Vapors from Fire Debris Samples. #### 1.4.1.3 Application - 1.4.1.3.1 The screening of samples to determine relative ignitable liquid concentrations and possible ignitable liquid class and range prior to extraction with other techniques. - 1.4.1.3.2 Samples suspected of containing light range constituents such as ketones and alcohols which would not be detected by techniques involving a solvent. - 1.4.1.3.3 Liquid samples suspected to contain a light to medium range ignitable liquid (C4 C11). ## 1.4.1.4 <u>Sensitivity</u> 1.4.1.4.1 This separation protocol is the least sensitive of the recovery techniques covered in this SOP. ## 1.4.1.5 <u>Limitations</u> Interfering compounds inherent in the fire debris recovered by this method may create GC-MSD data interpretation problems. These compounds are the result of pyrolysis of solid fuels present at the fire scene and the combustion of organic compounds liberated during the fire process. - 1.4.1.5.2 This method lacks the sensitivity of other available recovery techniques. A negative result from the application of this technique should be interpreted as only indicating that a significant amount of an ignitable liquid may not be available for detection. - 1.4.1.5.3 This method is more effective in recovering light to medium range products than heavy range products. The higher temperatures required to recover heavy range products could result in the production of additional decomposition of the sample matrix. # ANALYSIS SCHEME FOR EXTRACTION OF FIRE DEBRIS Headspace GC-MSD Analysis Sampling 20-30 min. @ 40-90°C Data Interpretation Medium to Light Heavy? Negative ACS 2-16 hours @ ambient 1-2 hours @ 50-60°C ACS 16-24 hours @ 50-6060 Desorb ACS with Carbon GC-MSD Analysis Desorb ACS with Carbon Disulfide **Heavy Petroleum Product** ACS Solvent 16-24 hrs Extraction @ 80-90°C Analysis Report Desorb ACS with Carbon Disulfide **GC-MSD** Analysis Data 4 of 32 Interpretation rev. 5 Issued: 02/22/2006 Fire Evidence Analysis - Rev 5.doc ### 1.4.1.6 Reference Material - Refer to section 1.4.1.12 for headspace sampling reference material preparation. - 1.4.1.6.2 Refer to section 1.5.4.2 for headspace test mixture requirements. #### 1.4.1.7 Safety Concerns - 1.4.1.7.1 Care should be taken with the handling headspace sampling syringes. - 1.4.1.7.2 Given the unknown nature of samples, olfactory screening may pose a health risk and is not recommended. Note obvious odors to aid in the selection of parameters applied to the recovery technique. #### 1.4.1.8 Equipment and Supplies - 1.4.1.8.1 Laboratory oven capable of providing uniform heating of samples from 40° to 90° C. - 1.4.1.8.2 Hammer and nail. - 1.4.1.8.3 Adhesive tape. - 1.4.1.8.4 Gas tight syringes capable of sampling from 10μL to 500μL. ## 1.4.1.9 Headspace Preparation - Non-liquid Samples 1.4.1.9.1 Friction Lid Can Propare the can for headspace sampling by using the hammer and nail to punch a small hole in the friction lid. The hole must be immediately covered with tape. # 4.1.9.2 Kapak®-type Material If the sample is submitted in polymer pouch material, open the pouch and place it into an appropriately sized friction lid can for sampling. ### 1.4.1.10 Headspace Preparation - Liquid Samples - 1.4.1.10.1 Examine liquid and note the number of layers present. - 1.4.3.10.2 If more than one layer is present, transfer 15µL of top layer of liquid to a quart size friction lid can with a taped sampling hole. - 1.4.3.10.3 If only one layer is present, remove a small portion of the liquid and place into an appropriately sized sealable glass extraction tube. Add an equal volume of carbon disulfide and mix. Note and record on analysis worksheet the number of layers present in extraction tube. - 1.4.3.10.4 If upon addition of the solvent, one-layer results, transfer $15\mu L$ of liquid of original liquid sample to a quart size friction lid can with a taped sampling hole. - 1.4.3.10.5 If upon addition of the solvent two layers result, remove a representative amount of the liquid, not to exceed approximately one-third of the original liquid sample, and place into a quart size friction lid can with a tape sampling hole. ### 1.4.1.11 Headspace Sampling - 1.4.1.11.1 If a significant odor of a petroleum product exists, first collect headspace sample at room temperature. The headspace may be resampled after heating. - 1.4.1.11.2 If a significant odor is not present or if room temperature sampling was inadequate, place friction lid can into a 40 90°C closely monitored heating device for 10 to 30 minutes. - 1.4.1.11.3 If the sample is heated, place the gas tight syringe in an oven at the same temperature the sample is being heated at. - 1.4.1.11.4 After inserting the gas tight syringe through the sampling hole in the friction lid can, slowly pump the syringe three times and inject 10 to 500µL into GC injection port. Immediately retape sampling hole. - 1.4.1.D1.5
Analyze by GC-MSD as described in section 1.5. ## Headspace Sampling of Reference Standard - 1.4.1.12.1 Place 15uL ignitable liquid reference standard into to a quart size friction lid can with a taped sampling hole. - 1.4.1.12.2 Process friction lid can as with case samples. ### 1.4 RECOVERY METHODS 1.4.2 Separation of Ignitable Liquid Residues from Fire Evidence Samples by Passive Headspace Concentration with Activated Charcoal 1.4.2.1 General This method serves to recover ignitable liquid residues from samples submitted as evidence in fire investigations. - 1.4.2.1.2 This method utilizes activated charcoal impregnated polymer strips (ACS) to adsorb, and thus trap, ignitable liquid residues. - 1.4.2.1.3 This method recovers ignitable liquids for subsequent instrumental analysis by a gas chromatograph equipped with a mass selective detector (GC-MSD). - 1.4.2.1.4 This method is time efficient and is essentially non-destructive to the sample. - 1.4.2.2 <u>ASTM Reference Method</u> Refer to ASTM standard practice E 1412-00, Standard Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration With Activated Charcoal. - 1.4.2.3 Application This procedure is useful for samples containing a light to medium range (>C6 → ≅C14) petroleum distillate product as suggested by an indicative odor. This method will recover heavier range distillates (>C14) with the limitation indicated in section 1.4.2.5.2. - 1.4.2.4 <u>Sensitivity</u> Capable of isolating quantities less than 0.1μL of an ignitable liquid residue from a sample. 1.8.2 - 1.4.2.5 Limitations 1.4.2.5.1 The updated classification system of E 1618-01 and E 138701, classifies class IV and V products together as Heavy Petroleum Distillates. For this reason, under E 1618-01 and E 1387-01, the designation of Heavy Petroleum Distillates/Heavy Product Range does not require the completion of a solvent extraction. - 1.4.2.5.2 Compounds longer than hexadecane (C16) may not be effectively volatized for adsorption by ACS when using an oven temperature below 60°C. - 1.4.2.5.3 This method may not fully differentiate a kerosene class product (formerly E 1618-97/E 1387-95 class IV) from a heavy petroleum product (formerly E 1618-97/E 1387-95 class V). When full differentiation is an issue the following two options, however, are available. - 1.4.2.5.3.1 Option One Perform a solvent extraction as described in section 1.4.3. #### 1.4.2.5.3.2 Option Two Resample at a higher oven temperature (70° -90°C). Resampling is discussed in section 1.4.2.12. Samples containing high levels of light to medium range 1.4.2.5.4 ignitable liquids are prone to displacement and thus loss of light petroleum product components. A shorter adsorption time and a larger ACS should be used for samples suspected of containing larger concentrations of light to medium range petroleum products based upon the presence of a significant petroleum product odor. #### Equipment and Supplies 1.4.2.6 1.4.2.6.1 Chemical fume hood Individually packaged activated charcoal polymer strips 1.4.2.6.2 (Albrayco Daboratories ACS-150-6PACK (ACS) equivalent). Each strip is approximately 8 x 20mm for a total area of 160mm² ASTM E1412-00 recommends a minimum strip size of 100mm² Metal, non-coated, paper clips 1.4.2.6.3 Magnet capable of securing paper clip to lid of friction lid can 1.4.2.6.4 Large laboratory oven for uniform heating of friction lid cans 1.4.2.6.5 and Kapak-type pouches at 50-90°C. 2-mL widemouth automatic liquid sampler (ALS) vials preassembled with screw-top cap with PTFE/silicone septa Agilent 5182-0865 or equivalent) Glass vial microinserts (Agilent 5183-2088 or comparable) Polymer evidence bags/sheet 1.4.2.6.9 Heat sealer ## Reagents #### 1.4.2.7.1 Carbon disulfide (CS₂) Must meet American Chemical Society specifications. (Fisher C185-500 (low benzene) or equivalent). #### Reference Material 1.4.2.8 Reference material can be run diluted or after recovery with 1.4.2.8.1 this recovery technique as described in section 1.4.2.14. Refer to section 1.5.4 for ignitable liquid test mixture and 1.4.2.8.2 reference standards requirements and appropriate dilutions. #### Safety Concerns 1.4.2.9 - 1.4.2.9.1 Carbon disulfide is an extremely flammable, volatile liquid. All routes of exposure to carbon disulfide have adverse affects on the central nervous system with a NFPA health rating of 3 (severe). Care should be taken to protect all routes of exposure from contact with carbon disulfide; as well as keeping the solvent well away from heat sources. - 1.4.2.9.2 For further information regarding the hazards of exposure to carbon disulfide refer to material safety data sheets (MSDS). - 1.4.2.9.3 Given the unknown nature of case samples, olfactory screening may pose a health risk and is not recommended. Obvious odors should however be noted to aid in the selection of parameters applied to the recovery technique(s). 1.8.13 ### 1.4.2.10 Passive Adsorption Procedure - 1.4.2.10.1 Secure two appropriately sized activated charcoal strips (ACS) in paper clips. One of these ACS will be used for analysis, the second for retention purposes. - 1.4.2.10.10 Note lot number of ACS on analysis worksheet. - 1.4.2.10.2 Size of ACS used depends upon the presence, and intensity of, a characteristic ignitable liquid odor and the sample size. - 1.4.2 10.3 Open friction lid can or evidence pouch and quickly note any oder present. - 1.4.2.10.4 Suspend ACS over the sample. Secure paperclip by placing a magnet on the lid of the can or on the outside of the pouch material. - 1.4.2.10.5 If a strong odor of petroleum product exists, allow strip to collect sample at room temperature for 2-16 hours or place into a 50-60°C, closely monitored, oven for 1-2 hours. - 1.4.2.10.7 If an odor is not present, place friction lid can into a 50-80°C laboratory oven for 16 to 24 hours. - 1.4.2.10.8 As described in E 1412-00, important considerations for the optimum adsorption time for representative sampling and/or maximum sensitivity are the size of charcoal strip, the adsorption temperature and the ignitable liquid composition and concentration. - 1.4.2.10.9 At the completion of the adsorption period, remove can from oven and allow to cool for approximately 30 minutes. - 1.4.2.10.10 Label ALS vials with identifying information for both analysis and retention ACS. - 1.4.2.10.11 Transfer each ACS from can directly into a labeled 2mL-widemouth automated sampler (ALS) vial and cap immediately. #### 1.4.2.11 <u>Elution Procedure - Analysis ACS</u> - To elute compounds trapped upon the charcoal, add 50 to 1000μL carbon disulfide (CS) to each vial. Immediately seal vial. - 1.4.2.11.2 To facilitate extraction, place vial on its side. - 1.4.2.11.3 Document the source, lot and volume of CS₂ used on analysis worksheet. - 1.4.2.11.4 Transfer a portion of the carbon disulfide into labeled autosampler vial with microinsert, and cap. The vial containing the charcoal strip may be stored in the flammables refrigerator. - 1.4.2.11.5 If initial examination indicates a significant odor of an ignitable liquid in the sample, the CS₂ extract may be diluted prior to GC-MSD analysis. ## 1.4.2.12 Resampling of Item - 1.4.2.12.1 If initial GC-MSD data indicates that the strip was clearly overloaded, the sample can be resampled at ambient temperature or with a shortened adsorption time. - 1.4.2.12.2 If initial examination of GC-MSD data indicates a kerosene or diesel fuel product, the sample may be resampled at 80 90°C for 16 to 24 hours. ### 1.4.2.13 Packaging of Retention ACS - 1.4.2.13.1 Place vial containing retention ACS into polymer pouch material and heat seal. - 1.4.2.13.2 Place heat-sealed pouch into corresponding evidence container. | | | | PHE EVIDENCE Analysis | |-----------|---------------|------------------------------------|--| | 1.4.2.14 | ACS Recover | y of Reference St | andard | | 1, 1,20,1 | 1.4.2.14.1 | Place 1 to 10µ | L ignitable liquid reference standard into a nart sized friction lid can, and seal. | | | 1.4.2.14.2 | Secure ACS in 1 | paper clip. | | | 1.4.2.14.3 | Use a magnet to friction lid can a | o secure prepared collection device onto lid of and immediately seal lid. | | | 1.4.2.14.4 | Place friction lie | d can into a 50°C oven for 1 hour. | | | 1.4.2.14.5 | Process charcoa | l strip as with case samples. | | 1 10 15 | 0.11/ | | So | | 1.4.2.15 | Quality Assur | | DI 1: (1 | | | 1.4.2.15.1 | Charcoal Strip | | | | | 1.4.2.15.1.1 | A charcoal strip blank must be run with each batch of cans placed into an oven. A blank ACS should be prepared for each oven used. | | · | | 1,4.2.15,1.2 | Prepare ACS as described for case samples. | | | ~ * | 1.4.2.15.1.3 | Place prepared collection device into a clean, empty quart sized friction lid can. | | | %O, | 1,4,2,15,1,4 | Process charcoal strip as with case samples. | | let's | 1.42.95.20 | New ACS Lot
1.4.2.15.2.1 | Each new lot of ACS should be checked for contamination and relative recovery prior to official use. | | ,00e | | 1.4.2.15.2.2 | Contamination should be checked for by preparing a blank as described in sections 1.4.2.10 and 1.4.2.11. | | | | 1.4.2.15.2.3 | Relative recovery should be verified with $5\mu L$ of 50% evaporated gasoline as described in sections 1.4.2.10 and 1.4.2.11. | | | | 1.4.2.15.2.4 | GC-MSD data must be centrally stored in the laboratory performing the analysis. | | | 1.4.2.15.3 | New Elution S 1.4.2.15.3.1 | olvent Bottle Relative contamination must be checked for | 11 of 32 in each new bottle of CS2, regardless of lot. | 1.4.2.15.3.2 | For this check, evaporate a volume of CS2 by | |--------------|--| | | 50%. | - 1.4.2.15.3.3 Relative toluene concentration must be noted. Solvent should be free of other identifiable ignitable liquids. - 1.4.2.15.3.4
GC-MSD data must be centrally stored in the laboratory performing the analysis. ### 1.4.2.15.4 Periodic ACS Adsorption Efficiency - 1.4.2.15.4.1 A minimum of once every six months, check the recovery ability of a particular lot of ACS. - 1.4.2.15.4.2 Add 5µL of 50% evaporated gasoline to a quart size friction lid can. - 1.4.2.15.43 Process ACS as described in sections 1.4.2.10 and 1.4.2.11. - 14.2.15.4.4 GC-MSD data must be centrally stored in the laboratory performing the analysis. ## 1.4.2.16 Analysis Analyze extracts by GC-MSD as outlined in section 1.5 of this method. #### 1.4 RECOVERY METHODS - 1.4.3 Separation and Concentration of Ignitable Liquid Residues from Fire Evidence Samples by Solvent Extraction - 1.4.3.1 <u>General</u> - This method serves to recover ignitable liquid residues from samples submitted as evidence in fire investigations. - 1.4.3.1.2 This method applies the principle "Like dissolves like". Ignitable liquid/residue in the sample is recovered with an organic solvent which is filtered and concentrated if necessary. #### 1.4.3.2 <u>ASTM Reference Method</u> Refer to ASTM standard practice E 1386-00, Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Solvent Extraction. ### 1.4.3.3 Application 1.4.3.3.1 This recovery technique may be applied to samples which may contain a kerosene to heavy petroleum distillate product as indicated by a strong odor and/or GC/MSD data from analysis of passive headspace ACS recovered extract. Although the updated classification system of E 1618-01 and E 1387-01 has class IV and V products classified together as Heavy Petroleum Distillates, a solvent extraction is required in order to fully differentiate a kerosene class product (formerly E 1618-97/E 1387-95 class IV) from a heavy petroleum product (formerly E 1618-97/E 1387-95 class V). - 1.4.3.3.2 Samples which contain a high percentage of charred debris and tend to hold ignitable liquid residues more tightly. - 1.4.3.3.3 Samples which contain non-porous surfaces such as glass, or burned containers. - 1.4.3.3.4 Aqueous samples and debris samples containing a significant amount of water. - 4.3.3.5 Samples which have a significant odor of an ignitable liquid. - ..4.3.3.6 Liquid samples suspected to contain an ignitable liquid. ## 1.4.3.4 <u>Sensitivity</u> 1.4.3.4.1 This separation protocol is capable of isolating quantities smaller than $1\mu L$ of an ignitable liquid residue from a sample (ASTM E1386-00, 4.2). ## 1.4.3.5 <u>Limitations</u> 1.4.3.5.1 Interfering compounds, inherent in the fire debris recovered by this method, may create GC-MSD data interpretation problems. These compounds are the result of pyrolysis of solid fuels present at the fire scene and the combustion of organic compounds liberated during the fire process. - 1.4.3.5.2 The evaporation step in this method may lead to the loss of light ignitable liquid products or lighter components of medium to heavy range products. Close monitoring of the evaporation process should reduce losses. - 1.4.3.5.3 Lighter compounds may not be detected by this technique due to the requirement for a solvent delay during GC-MSD analysis. Any compound with a retention time less than the solvent delay will not be detected by this technique. - 1.4.3.5.4 Due to the nature of the solvent extraction process, this technique may render the extracted sample unsuitable for resampling. For this reason, only a representative portion of the sample should be subjected to this technique. #### 1.4.3.6 <u>Safety Concerns</u> - 1.4.3.6.1 Carbon disulfide is an extremely flammable, volatile liquid. All routes of exposure to carbon disulfide have adverse affects on the central nervous system with a NFPA health rating of 3 (severe). Care should be taken to protect all routes of exposure from contact with carbon disulfide as well as keeping the solvent well away from heat sources. - Pentane is an extremely flammable, volatile liquid. Although pentane only has a NFPA health rating of 1 (slight), exposure though inhalation and ingestion has an adverse affect on the central nervous system. Skin contact causes irritation. Care should be taken to protect all routes of exposure from contact with pentane as well as keeping the solvent well away from heat sources. - 1.4.3.6.3 For further information regarding the hazards of exposure to extraction solvents refer to material safety data sheets (MSDS). - 1.4.3.6.4 Given the unknown nature of samples, olfactory screening may pose a health risk and is not recommended. Note obvious odors to aid in the selection of parameters applied to the recovery technique. #### 1.4.3.7 Equipment and Supplies - 1.4.3.7.1 Chemical fume hood. - 1.4.3.7.2 Tube rocker. - 1.4.3.7.3 **Filter Paper** | | | 1.4.3.7.3.1 | Whatman Grade 1 - Qualitative (27cm) or equivalent | | | | | |---------|---|-------------------------------------|---|--|--|--|--| | | | 1.4.3.7.3.2 | Whatman 1PS -Phase separation (15cm) or equivalent | | | | | | | 1.4.3.7.4 | Glassware | 4402100220 | | | | | | | 1,3,5,7,1 | 1.4.3.7.4.1 | Assorted sizes of glass funnels | | | | | | | | 1,4.3.7.4.2 | Assorted 25mL to 2000mL glass beakers | | | | | | | | 1.4.3.7.4.3 | Assorted sizes of screw-top extraction tubes | | | | | | | | 1.7.5.7.7.5 | and screw caps (no adhesive liners). | | | | | | | | 1.4.3.7.4.4 | 2-mL widemouth automatic liquid sampler | | | | | | | | 1,4,5,7,4,4 | (ALS) vials preasembled with screw-top | | | | | | | | | cap with PTFE/silicone septa (Agilent 5182- | | | | | | | | | 0865 or comparable). | | | | | | | | 1,4.3.7.4.5 | Glass vial microinserts (Agilent 5183-2088 or comparable). | | | | | | | | | 1/3 | | | | | | 1.4.3.8 | Reagents | | 10° M | | | | | | | 1.4.3.8.1 | | Pesticide Grade P400-4 or equivalent) | | | | | | | 1.4.3.8.2 | Carbon disulfi | de (Fisher low benzene/ACS C185-500 or | | | | | | | | equivalent) | 0 (1) | | | | | | | | 2011 | | | | | | | 1.4.3.9 | Solvent Extra | ction - Non-liqui | d Samples | | | | | | | 1.4.3.9.1 Transfer a representative portion of sample to an appropriately | | | | | | | | | S | sized glass beak | ter, Kapak [®] -type pouch or friction lid can. | | | | | | | 1.4.3.903 × | Add sufficient s | solvent to thoroughly moisten sample. Suitable | | | | | | | 73, 00 | | ted in 1.4.3.8. Carbon disulfide should only be | | | | | | | * 10. CO. | | amples such as wicks. | | | | | | | 5) , 1/C | | difference of the state | | | | | | Ex | 14393 | Mix/soak the sa | ample for approximately one to five minutes. A | | | | | | 0 | 1, 110.15.15 | | used as a plunger to facilitate the extraction of | | | | | | ,000 | | flexible materia | | | | | | | 10 | | 1.4.3.9.3.1 | Note type, lot and source of extraction | | | | | | | | 11 110101011 | solvent on fire evidence worksheet. | | | | | | | | | 551, 611, 62, 212, 6, 22, 22, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24 | | | | | | | 1.4.3.9.4 | | ilter solvent through phase separation paper Grade 1 filter paper. | | | | | | | 1.4005 | T | lar managing a gignificant adop a ~2ml | | | | | | | 1.4.3.9.5 | aliquot of solve
to evaporation. | bles possessing a significant odor, a ≅2mL ent should be placed into a 2mL ALS vial prior Additional evaporation may not be necessary. Any be diluted as necessary. | | | | | | | 1.4000 | те 1 | Il alwayt to avanage annuarimataly 500/ | | | | | | | 1.4.3.9.6 | | llow solvent to evaporate approximately 50%. iquot of the partially evaporated sample to a | | | | | | | | | | | | | | glass insert in a labeled ALS vial. Additional aliquots at higher levels of evaporation may be collected at the discretion of the analyst. - 1.4.3.9.7 Continue to evaporate remaining solvent. Concentrate extract down to approximately 1mL. Place the sample into labeled ALS vial. - Solvent Extraction Unknown Liquid Samples 1.4.3.10 - 1.4.3.10.1 Examine liquid and note the number
of layers present. - If more than one layer is present transfer 2µL of top layer of 1.4.3.10.2 liquid to a labeled ALS vial containing 2mL of carbon disulfide and mix. - If only one layer is present, remove a small portion of the 1.4.3.10.3 liquid and place into an appropriately sized sealable glass extraction tube, add an equal volume of carbon disulfide and mix. Note and record on analysis worksheet the number of layers present in extraction tube. - If upon addition of the solvent, one layer results, transfer 2µL 1.4.3.10.4 of liquid of original liquid sample to a labeled ALS vial Containing 2mL of carbon disulfide and mix. minutes. - 1.4.3.40.3 Property of 1.4.3.40.3 If upon addition of the solvent two layers result, remove a portion of the original liquid sample and place into an appropriately sized sealable glass extraction tube, add an equal volume of carbon disulfide and mix. Ideally at least - 50% of the original sample liquid is not sampled. Mix the sample for approximately one to five 1.4.3.10.5.1 - If a significant amount of water is present, 1.4.3.10.5.2 the solvent may be filtered through phase separation paper supported with Grade 1 filter paper. - For case samples possessing a significant 1.4.3.10.5.3 odor, a 2mL aliquot of solvent should be sampled prior to evaporation. This sample may be diluted as necessary. - 1.4.3.10.5.4 If necessary, allow solvent to evaporate approximately 50%. Transfer an ≅1 to 2mL 16 of 32 aliquot of the partially evaporated sample to a labeled ALS vial. Additional aliquots at higher levels of evaporation may be collected at the discretion of the analyst. 1.4.3.10.5.5 Continue to evaporate remaining solvent. Concentrate extract down to approximately 1mL. Place the sample into labeled ALS vial. 1.4.3.10.6 For all extraction situations, note lor and source of extraction solvent on fire evidence worksheet. ### 1.4.3.11 Solvent Purity Check 1.4.3.11.1 When solvent used for extraction is subjected to evaporation, the batch of samples should include a solvent blank. 1.4.3.11.1.1 Place approximately 200mL of extraction solvent into a clean beaker. .4.3.11.12 Evaporate solvent to approximately 1mL. A.3.11.1.3 The degree of solvent evaporation should be at least twice the extent used for questioned samples (ASTM E 1386-00, 5.2.1). 1.4.3,11.1.4 When the extraction solvent is used only to dilute a suspected ignitable liquid, it does not have to be subjected to an evaporation check. .4.3.12 <u>Analysis</u> 4.3.12.1 Place each solvent extract into labeled ALS vial with microinsert, and cap. 1.4.3.12.2 Analyze extracts by GC-MSD as described in section 1.5. If a partially evaporated extract provides sufficient sensitivity, the more evaporated extract(s) need not be analyzed. ### 1.5 ANALYSIS OF RECOVERED EXTRACTS #### 1.5.1 General 1.5.1.1 To detect the presence of an ignitable liquid residue in fire evidence samples, extracts recovered by either headspace sampling, activated charcoal or solvent extraction are analyzed with a gas chromatograph equipped with a mass selective detector (GC-MSD). 1.5.1.2 Post-run macros, which process the data to generate extracted ion profiles, assist with the detection and identification of ignitable liquid residues. #### 1.5.2 ASTM Reference Method Refer to ASTM E 1618-01, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry and ASTM E 1387-01, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography. #### 1.5.3 Apparatus #### 1.5.3.1 Instrumentation Integrated system consisting of a Gas Chromatograph equipped with a Mass Selective Detector. Data system must be capable of handling macro programs to extract ion profiles to assist with the interpretation of data. #### 1.5.3.2 Column 30 meter Hewlett Packard HP-5MS [(5% PhMeSilcone) with 0.25 mm ID and 0.25 µm film thickness], or comparable. The column, with appropriate carrier gas flow and temperature program, must have the capability to adequately separate the components of the column resolution test mixture (refer to 1.5.4.1). ## 1.5.4 Chemicals and Reference Standards 1.5.4.1 Column Resolution Test Mixture The minimum requirements for the test mixture are described in E1618-01, 6.1. Compliant test mixtures can be obtained through Restek (#31224), Cerilliant (ERR-002) or comparable vendor/product. **1**.5.4.1.1.1 Place 200µL test mixture into 2mL ALS vial. Bring up to volume with carbon disulfide. - 1.5.4.1.2 The Resolution Test Mixture should be compared to the previous run for retention time shifts and changes in abundances that may indicate instrumental problems and/or deterioration of the test mixture. - 1.5.4.1.3 All constituents of this test mixture with the exception of hexane must be present. ### 1.5.4.2 Headspace Test Mixture 1.5.4.2.1 When headspace sampling is employed, in addition to the E1618 column resolution test mixture described in 1.5.4.1, a mixture of light (C4 - C6) ignitable liquids must be included in each analysis run. The light test mixture should include compounds which elute 1.5.4.2.2 during the solvent delay of the GC-MSD analysis method used for the E1618 column resolution mixture. The mixture must contain, at a minimum, acetone, 2-butanone, isopropanol, pentane and hexanes. #### 1.5.4.3 Ignitable Liquid Reference Material Ignitable liquids for use as reference material may be obtained as required from commercial and local sources. A reference standard collection including weathered/evaporated commonly encountered ignitable liquids must be available. Reference material may be diluted as described below or neat products may be recovered by either headspace sampling or ACS. #### Dilution of Reference Material 1.5.4.3.1 #### Neat Ignitable Liquid Products 1.5.4.3.1.1 Additional dilutions may be use as required. 1.5.4.3.1.2 Diluted Commercial Products Most commercially obtained ignitable liquid reference standards should be diluted 1:10. Dilution should be adjusted as necessary. 1.5.4.3.2 Anthentication of Ignitable Liquid Reference Material 1.5.4.3.2.1 The authentication of ignitable liquid standards presents a unique prohistandard is a multi-comidentification of ignitable liquid standard is a multi-comidentification of ignitiable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignitable liquid reference Material standards presents a unique prohibition of ignition igniti sources should be based upon interpretation of the TIC and EIP data obtained through the analysis of the standard. The interpretation should use the same process applied when interpreting the data from a casework sample. In addition, the TIC and EIP data should be 1.5.4.3.2.3 compared with the manufacture package This overall insert/information packet. process should verify that the standard is classified correctly. Newly obtained standards from local sources should be compared to authenticated commercially available standards prior to official use. | | | | 1.5.4.3.2.5 | Authentication documentation must be stored centrally. | |-------|----------|--------------|--|--| | 1.5.5 | GC/MSD | Analysis | | | | | 1.5.5.1 | Instrumental | Parameters | Co | | | | 1.5.5.1.1 | | printouts for current parameters. | | | | 1.5.5.1.2 | Current and past
the laboratory per | method printents must be centrally stored in forming the analysis. | | | 1,5,5,2 | MSD Tunin | Œ | SIE | | | 1,5,5,2 | 1.5.5.2.1 | | nd System Verification must be performed prior | | | | 1,3,3,2,1 | to initiating a | new sequence run. Ideally each sequence reted by an AUTOTUNE. | | | | 1.5.7.2.2 | All parameter Verification in ranges. | s evaluated for the <i>Autotune</i> and <i>System</i> nust fall within manufacturer recommended | | | | 1.5.7.2.3 | | System Verifications must be centrally stored in performing the analysis. | | | 1550 | CKLACIK | | Samula Daguiyamanta | | | 1.5.5.3 | GC-MSD Q | In-between Sa | Sample Requirements | | | Probeith | 01.3.2.3,1 | 1.5.5.3.1.1 | Analyzing a recovery method based blank between case samples will indicate if any carry over is occurring. | | | X | | 1.5.5.3.1.2 | For headspace sampling the corresponding amount of headspace may be injected. | | | | | 1.5.5.3.1.3 | For ACS recovery, a CS2 solvent blank must be analyzed. | | | | | 1.5.5.3.1.4 | For solvent extraction, the solvent used for extraction must be used for the solvent blank. | | | | | | | 1.5.4.3.2.4 1.5.5.3.1.5 TIC from BLANK must be placed into case file. If any peaks are present, the MS for peaks of interest must also be placed in the case file. #### 1.5.5.3.2 Performance Verification Test Mixture 1.5.5.3.2.1 To establish that the system has the capability to resolve compounds as outlined in ASTM E 1618-01/E 1387-01, a column resolution check mix should be analyzed at the beginning and the end of the analysis sequence. 1.5.5.3.2.2 A minimum of one ASTM test mix must be run with each sequence. 1.5.5.3.2.3 When headspace sampling is used, a mixture of commonly encountered light compounds must be included in the analysis run to verify detection ability. Data for test mixtures must be centrally stored in the laboratory performing the analysis. A copy of the test mix data may also be placed into a casefile. 1.5.5.3.3 Helium Gas Purity To prevent contamination from carrier gas, ultrapure (≥99.995%)
helium shall be used. 1.5.5.4 GC-MSD Sequence 1.5.5.4.1 Load SEQUENCE from sequence menu. 1.5.5.4.2 Select *Edit Sample Log Table* from sequence pull-down. The following is an example of the sample log table. | Sample Log Table for FIRE.M | | | | | | |-----------------------------|--------|------|-----------|--------|--| | Line | Туре | Vial | Date File | Method | Sample Name | | 1) | Sample | 51 | BLK-ACS | ARSON | QC ACS 02-01-01 ACS LOT# 062200 | | 2) | Blank | 75 | BLANK | ARSON | Carbon Disulfide Blank Fisher Lot#950674 | | 3) | Sample | 53 | 006-2ACS | ARSON | P2006006 (1) ACS Lot No: 062200/CS2 lot#950674 | | 4) | Blank | 75 | BLANK | ARSON | Carbon Disulfide Blank Fisher Lot#950674 | | 5) | Sample | 54 | 006-2SE | ARSON | P20006006 (2) Solvent e/Pentane Lot No: 962473 | | 6) | Sample | 74 | 50EVGAS | ARSON | 50% evap Sinclair gasoline Lot No:0500-1/CS2 | | 7) | Sample | 71 | ASTM1618 | ARSON | ASTM E1618 Column Resolution Mix*/CS2 | 1.5.5.4.3 Source and lot number may be placed under sample log table *Miscellaneous Information*. ### 1.5.5.4.4 **Case Samples** In Sample Log Table, program case samples into sequence by laboratory and sample number. Sample name description must include method of recovery. ### 1.5.5.4.5 Quality Assurance Samples In Sample Log Table, program quality control samples. Information must include lot number when applicable. #### 1.5.5.4.6 Ignitable Liquid Reference Standards 1.5.5.4.6.1 In Sample Log Table, program appropriate ignitable liquid standards. 1.5.5.4.6.2 The source and lot numbers for commercially obtained products must be included. The source of locally obtained fuels (gasoline, diesel fuel, etc.) must be described. When available, the data of purchase (DOP) should be included. #### 1.5.6 GC/MSD Data Analysis Data processing capabilities must include both the generation of total ion chromatograms (TIC) and extracted ion profiles (EIP) of characteristic major ion fragments for each of the major types compounds found in ignitable liquids. The following MACROS are available to provide for options for data presentation to assist with interpretation. TICs and EIPs from case samples are compared against TICs and EIPs prepared for reference standards. EIPs maybe used to assist with the interpretation of the TIC but must not be the sole basis for the conclusions reached. ### 1.5.6.1 Deuser mac The macro generates the TIC and individually printed selected ion profiles. Individual profiles allow the analyst to see less abundant ions indicative of certain classes of compounds in greater detail than summed profiles. ^{1,8,13} This macro may be set up to run at the end of an analysis run or can be run in Data Analysis. In Data Analysis, load the method containing the deuser macro and a data file. From the method pull down, select run. Ions included are as follows: | Major Compound Types | Major Ion Fragments | | | | | |----------------------|---------------------|-----|-----|-----|--| | Alkanes | 43 | 57 | 71 | 85 | | | Aromatics | 91 | 105 | 119 | 133 | | | Cycloalkane/alkene | 55 | 69 | 82 | 83 | | | Indanes | 117 | 118 | 131 | 132 | | | PNAs* | 128 | 142 | 156 | 170 | | ^{*} Polynuclear aromatics (Naphthalenes) #### 1.5.6.2 Command Line Selected Ion Profiles Macros 1.5.6.2.1 ARION2 The ARION2 macro provides a custom 1.5.6.2.1.1 header on the TIC and one page with combined selected ion profiles for ions > characteristic for key ignitable liquid groups as indicated below. | Major Compound Types | Major Ion Fragments | | | | | |----------------------|---------------------|-----|-----|-----|--| | Alkanes | 43 | 57 | 71 | 85 | | | Aromatics | 91 | 105 | 119 | 120 | | | Cycloalkane/alkene | 55 | 69 | 82 | 83 | | | Naphthalenes . C | 128 | 142 | 156 | 170 | | | Major Compound Types | Ma | jor Ion | Fragm | | |----------------------|-----|---------|-------|-----| | Indanes | 117 | 118 | 131 | 132 | The INDANES macro provides a one page with combined selected ion profiles for ions characteristic for indane group as indicated below. | Major Compound Types | Major Ion Fractindanes | 117 | 119 | | 1.3.6.2.2.2 | On command "INDANES" | | 1.5.6.2.3 | COSTOM | 1.5.6.2.3 | for defining of window size (X-axis) and Adjustments made abundance (Y-axis). allows for enhancement of low abundance compounds. > On command line type 1.4.6.2.3.2 MACRO "CUSTOM", GO. 1.5.6.2.3 CUSTOM2 This macro provides a custom header on each 1.5.6.2.3.1 printout. Operator selects either a TIC or fullpage version of the selected ion profiles 23 of 32 indicated above for ARION2. Macro also allows for defining of window size (X-axis) and abundance (Y-axis). Adjustments made allows for enhancement of low abundance compounds. 1.4.6.2.3.2 On command line type MACRO "CUSTOM2", GO. #### Maintenance Schedule for Gas Chromatograph - Mass Selective Detector 1.5.7 MSD Troubleshooting In the advent that the MSD reports values which fall outside of acceptable ranges, troubleshooting procedures must be initiated to determine the origin of the problem. Commonly encountered reasons for the MSD to not pass the tune criteria include: - Calibration vial is empty - Excessive foreline or vacuum manifold pressure - Dirty ion source - Calibration valve is not working correctly - Bad signal cable connection - Filament has failed or is not connected properly - Bad ion source wiring connection - Bad detector wiring connection - Failed electron multiplier horn nal information refer manufacturer provided troubleshooting | 1572 | For Additional information resinformation. As Needed Maintenance | fer manufacturer provided troubleshoo | |----------|---|--| | Lx | Task | Indications | | Property | Replace inlet/injection port seal Options: 1. Merlin Microseal TM Septum 2. Septa | Longer or shifting retention time Loss of response Noisy detector signal Autotune indicates an air leak | | | Replace inlet/injection port liner and O-ring | Loss of responseVisual Inspection | | | Replace inlet/injection port base seal | Ghost peaksVisual Inspection | | | Clean inlet reducing nut | When replacing inlet base seal and/or column | | | Replace ion source filaments | Evaluation of Autotune | | | Clean ion source | Evaluation of Autotune | | | Replace column | Evaluation of chromatography and Autotune | | | Lubricate seals-Side plate O-ring | Autotune indicates an air leak | 1.5.7.3 Weekly Maintenance Task Check foreline pump oil fluid level 1.5.7.4 Six Month Maintenance #### Task Pump Maintenance - Drain and replace foreline pump fluid - Remove and inspect oil trap, refill or replace Check PFTBA calibration vial ■ Refill if necessary #### 1.6 INTERPRETATION OF ANALYTICAL DATA 1.6.1 E 1618-01 and E 1387-01 Classification system - 1.6.1.1 Classification system consists of eight major classes of ignitable liquids and one miscellaneous class. - 1.6.1.2 All but gasoline are further differentiated into light, medium or heavy subclasses based on carbon spread/n-hydrocarbon boiling range. - The subclasses allow for the characterization of products, which fall between classes due to evaporation/weathering. A product may be described as "light to medium" or medium to heavy" when the carbon number range does not fit neatly into one of the below categories. If this option is appropriate, the carbon number range should be reported. 1.6.1.2.2 The products listed in table 1 are examples of commercially available products which fall within each classification and are not intended to be all-inclusive. Additional references should be used to provide more specific examples for each class. 1.6.2 Identification of an Ignitable Liquid - 1.6.2.1 Compare data from case sample TIC and EIPs with data from reference material obtained with the same GC-MSD parameters. - 1.6.2.2 The characteristics which establish the presence of an ignitable liquid is set forth in Section 10 of ASTM E 1618-01, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry and section 9 of ASTM E 1387-01, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography. - The characteristics are to be used as the basis for the identification of an 1.6.2.3 ignitable by this SOP. - "plain any obs...ple) and a known refe. July be taken into account include exaporation, interference from burned management and techniques and/or bacter expression (soil samples). July 2.4.2 Unexplained differences should preclude the identification as an ignitable liquid. 1.6.2.5 A copy of the relevant reference material supporting the conclusions reached must be placed into the casefile. | Class | Light {C ₄ - C ₉ } | Medium { $\mathbf{C_8} - \mathbf{C_{13}}$ } | Heavy $\{C_8 - C_{20+}\}^{1.8.4}$
Heavy $\{C_9 - C_{20+}\}^{1.8.5}$ | |---|--|---|--| | Gasoline
All brands, including gasohol | Fresi | h gasoline is typically in the $ m C_4$ – $ m C_{12}$ r | ange | | Petroleum Distillates | Petroleum Bther
Some Cigarette Lighter Fluids
Some Camping Fuels | Some Charcoal Starters
Some Paint Thinners
Some Dry Cleaning Solvents | Kerosene
Diesel Fuel
Some Jet Fuels
Some Charcoal Starters | | Isoparaffinic Products | Aviation Gas
Specialty Solvents | Some Charcoal Starters Some Paint Thinners Some Copier Toners | Some
Commercial Specialty
Solvents | | Aromatic Products | Some Paint & Varnish Removers
Some Automotive Parts Cleaners
Xylenes
Toluene-based Products | Some Automotive Parts Cleaners Specialty Cleaning Solvents Some Insecticide Vehicles Fuel Additives | Some Insecticide Vehicles
Industrial Cleaning Solvents | | Naphthenic Paraffinic
Products | Cyclohexane Based
Solvents/Products | Some Charcoal Starters
Some Insecticide Vehicles
Some Lamp Oils | Some Insecticide Vehicles
Some Lamp Oils
Industrial Solvents | | N-Alkanes Products | Solvents
Pentane, Hexane, Heptane | Some Candle Oils
Some Copier Toners | Some Candle Oils
Carbonless Forms Copier Toners | | De-Aromatized Distillates | Some Camping Fuels | Some Charcoal Starters
Some Paint Thinners | Some Charcoal Starters
Odorless Kerosenes | | Oxygenated Solvents | Alcohols Ketones Some Lacquer Thinners Fuel Additives Surface Preparation Solvents | Some Lacquer Thinners
Some Industrial Solvents
Metal Cleaners/Gloss Removers | | | Other-Miscellaneous | Single Component Products
Some Blended Products
Some Enamel Reducers | Turpentine Products
Some Blended Products
Various Specialty Products | Some Blended Products
Various Specialty Products | Table 1: E 1618-01/E 1387-01 Ignitable Liquid Classification Scheme 1.8.4, 1.8.5 #### ANALYSIS REPORT 1.7 #### Fire Evidence Coversheet 1.7.1 #### 1.7.1.1 Description of Evidence 1.7.1.1.1 Using information recorded on fire evidence worksheet, the description on the analysis coversheet must include the item number, the agency exhibit number (when available), status of seals, the type of container and details of the type of evidence. 1.7.1.1.2 The description may include the location the evidence was said to have been recovered. #### 1.7.1.2 **Analysis Results** #### 1.7.1.2.1 Positive Results 1.7.1.2.1.1 When the criteria for identification of an ignitable liquid are met, the analysis results must indicate the class which the ignitable The carbon range (light, liquid falls. medium or heavy) as described in section 1.51.2 must be indicated for all classes except gasoline. Following the class designation, a listing of potential sources of the ignitable liquid must be compiled and listed. > A disclaimer indicating that positive results should be considered in context with all available information and do not automatically lead to the conclusion that a fire was incendiary in nature, must be added to the analysis report. 1.7.R2.1.2.eff of the control When the criteria for identification of an ignitable liquid are not met, the analysis results must indicate that no ignitable liquids were detected in the sample. 1.7.1.2.2.2 A disclaimer indicating that negative results do not preclude the possibility that ignitable liquids were present at the fire scene, must be added to the analysis report. Turpenes 1.8.14 1.7.1.2.3 Turpentine is a volatile essential oil obtained from the oleoresin of coniferous trees. The presence of the naturally occurring alkenes, turpenes (oleoresins) should be considered in context with the make up of the sample. 1.7.1.2.3.1 When a comparison control sample is available and clearly shows the same distribution of turpene constituents, a questioned sample containing wood may be reported out as negative. of turpenes containing wood, utild be used. The qualification contains turpenes, which may have originate from coniferous wood in the sample or from a medium range turpentine product. 1.7.1.2.3.3 When a comparison control sample of the involved wood is available and does not indicate the presence of turpenes, it is at the discretion of the analyst as to whether the qualifier is used. When the sample clawood which we of turpenes, whether the discretion of the analyst as to whether the qualifier is used. When in the absence of a comparison control 1.7.1.2.3.2 and the substrate is one known to have the potential of contributing the ignitable liquid identified, the ignitable liquid should not be identified as having been added to the sample. Examples of this include distillates in newspaper and varnished flooring. 1.7.1.2.2.2 The sample can be reported out as negative or a qualifier can be used. When appropriate, the qualifier must state that the sample was found to contain the ignitable liquid but due to the lack of a comparison control sample for the substrate it is unknown whether the ignitable liquid originated from (endogenous to) the substrate itself. ## 1.8 REFERENCES AND RECOMMENDED READING - 1.8.1 ASTM Method E 1388-00, Standard Practice for Sampling of Headspace Vapors from Fire Debris Samples. - 1.8.2 ASTM Method E 1412-00, Standard Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration With Activated Charcoal. - 1.8.3 ASTM Method E 1386-00, Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Solvent Extraction. - 1.8.4 ASTM Method E 1618-01, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. - 1.8.5 ASTM Method E 1387-01, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography. - 1.8.6 Dietz, W.R. Improved Charcoal Packaging for Accelerant Recovery by Passive Diffusion. J. Forensic Sci. 36(1):111-21;1991. - Newman, R.T.; Dietz, W.R.; Lothridge, K. The Use of Activated Charcoal Strips for Fire Debris Extractions by Passive Diffusion. Part 1: The Effects of Time, Temperature, Strip Size, and Sample Concentration. J. Forensic Sci. 41(3):361-370; 1996. - 1.8.8 Arson Accelerant Detection Course Materials, presented at Alcohol, Tobacco & Firearms Laboratory. Rockville, Maryland, May, 1993. - 1.8.9 Arson Analysis Workshop Materials, presented at Northwest Association of Forensic Scientist's Fall Meeting. Salt Lake City, Utah, October, 1996. - 1.8.10 Advanced Fire Debris Course Materials, presented at National Forensic Science Technology Center, St. Petersburg, Florida, December, 1996. - 1.8.11 Newman, R.; Gilbert, M.; Lothridge, K. GC-MS Guide to Ignitable Liquids. Boca Raton, FL: CRC Press: 1998. - 1.8.12 Stauffer, E., Concept of pyrolysis for fire debris analysts, Sci & Justice, 43(1):29-40, 2003. - 1.8.13 Laboratory Fire Standards and Protocols Committee Scientific Working Group for Fire and Explosions, Initial Assessment of Evidence, page 3, 8.1.5. - 1.8.14 Trimpe, M.A., *Turpentine in Arson Analysis*, J. Forensic Sci., 36(4):1059-1073, 1991. Refer to fire evidence training plan for additional references. Property of Jincontrolled Internet Junit Incontrolled Int ## <u>Section I</u> Recovery, Analysis and the Identification of Ignitable Liquid Residues from Fire Evidence Samples # **Manual History** | Revision | Issue Date | History | <u>Author</u> | |----------|------------|--|-----------------| | 0 | 01-1997 | History Original Issue ASTM update. | S.C. Williamson | | 1 | 01-07-1999 | ASTM update. | S.C. Williamson | | 2 | 01-19-2001 | Reformat, updates, refinements, Addition of magnet option to protocol. | S.C. Williamson | | 3 | 01-11-2002 | Addition of safety section, reformatted GC/MSD maintenance schedule and method refinement | S.C. Williamson | | 4 | 11-05-2003 | Update to most recent ASTM Standards | S.C. Williamson | | 5 | 02-22-2006 | Quality assurance sections updated, headspace sampling section reinstated, addition of ACS retention requirement | S.C. Williamson | | Approval | (1) | of Juggeo. | | | Approval | 2,(5) | | | |--------------------|------------------|-------|--| | Discipline Leader: | David A. Laycock | Date: | | | Issuance | | | | | QC Manager: | Richard D. Groff | Date: | |