Worklist: 4239

LAB CASE	<u>ITEM</u>	ITEM TYPE	DESCRIPTION
C2020-0757	1	вск	Alcohol Analysis
C2020-0771	1	вск	Alcohol Analysis
C2020-0772	1	вск	Alcohol Analysis
C2020-0793	1	ВСК	Alcohol Analysis
C2020-0793	2	вск	Alcohol Analysis
C2020-0808	1	вск	Alcohol Analysis
C2020-0836	1	вск	Alcohol Analysis
C2020-0871	1	вск	Alcohol Analysis
C2020-0872	1	вск	Alcohol Analysis
C2020-0877	1	вск	Alcohol Analysis
C2020-0888	1	вск	Alcohol Analysis
C2020-0891	1	вск	Alcohol Analysis
C2020-0910	1	вск	Alcohol Analysis
C2020-0916	1	BCK	Alcohol Analysis

Quantitative Analysis for Ethanol & Qualitative Analysis for Other Volatiles

Analytical Method(s): 1.0

Device: Hamilton MICROLAB Liquid Processor/Dilutor Serial Number: ML600HC11379

Volatiles Quality Assurance Controls Run Date(s): 5-17-20

0.99999	000 Column2	1.0000	Column 1		Curve Fit:	
OK	FN06041502	Lot#		Sep-20	nent mixture:	Multi-Component mixture:
g/100cc						
0.1996 g/100cc	0.1832-0.2238	0.2035	0.2	1803028	Mar-22	Level 2
0.1980 g/100cc						
g/100cc						
0.0777 g/100cc	0.0731-0.0893	0.0812	0.0	1801036	Jan-22	Level 1
0.0768 g/100cc				,		
Overall Results	Acceptable Range	Target Value	Targe	Lot#	Expiration	Control level

Ethanol Calibration Reference Material Acceptable Range Column 1 Column 2 Precision Precision Mean Calibrator level Target Value Acceptable Range Column 1 Column 2 Precision Mean 50 0.050 0.050 0.045 - 0.055 0.0503 0.0492 0.0011 0.0497 100 0.100 0.180 - 0.220 0.1991 0.1976 0.0015 0.1983 200 0.300 0.300 0.270 - 0.330 0.3015 0.3007 0.0008 0.3011 400 0.400 0.450 - 0.550 0.4993 0.5008 0.0015 #DIV/0!
Acceptable Range Column 1 Column 2 Precision 0.045 - 0.055 0.0503 0.0492 0.0011 0.090 - 0.110 0.1004 0.0992 0.0012 0.180 - 0.220 0.1991 0.1976 0.0015 0.270 - 0.330 0.3015 0.3007 0.0008 0.360 - 0.440 0.4993 0.5008 0.0015
Column 1 Column 2 Precision 0.0503 0.0492 0.0011 0.1004 0.0992 0.0012 0.1991 0.1976 0.0015 0.3015 0.3007 0.0008 0.4993 0.5008 0.0015
Column 2 Precision 0.0492 0.0011 0.0992 0.0012 0.1976 0.0015 0.3007 0.0008 0.5008 0.0015
Precision 0.0011 0.0012 0.0015 0.0008 0
Precision 0.0011 0.0012 0.0015 0.0008 0
Mean 0.0497 0.0998 0.1983 0.3011 #DIV/0! 0.5

Aqueous Controls Acceptable Range	0.001 8/ TOOL	TOO.0 - 0.00T	0.000	
Target Value	0 081	0 076 - 0 084	0.080	80
Target Value				
Target Value				
Aqueous Controls Target Value		Survivor transc	ranger , and	COME OF TOLET
Aqueous Controls	Over	Acceptable Range	Target Value	Control level
Aqueous Controls		The second secon	PARTY PARTY AND THE REST WITH THE PARTY AND A PARTY PARTY WITH THE REST OF THE PARTY AND THE PARTY A	
			Aqueous Controls	

Revision: 2

REVIEWED

By Rachel Cutler at 12:51 pm, May 19, 2020

Issuing Authority: Quality Manager

Issue Date: 12/23/2019

Sample Summary

Sequence table: C:\Chem32\1\TEMP\AESEQ\QS_17.05.2020_12.22.54\5-17-2020.S

Data directory path: C:\Chem32\1\Data\5-17-20jj

Logbook: C:\Chem32\1\Data\5-17-20jj\5-17-2020.LOG

Sequence start: 5/17/2020 12:36:39 PM

Sequence Operator: SYSTEM Operator: SYSTEM

Method file name: C:\CHEM32\1\METHODS\ALCOHOL.M

			Sample Name				Cal #
#	T T	#		[g/1000	cc] Dilution	i	Cmp
	1		water-1	_		001F0101.D	0
	2		VOL MIX FN-06041	-		002F0201.D	10
	3		ISTD BLANK-1	-	1.0000	003F0301.D	2
	4		QC-1(1)-A	-	1.0000	004F0401.D	4
	5		QC-1(1)-B	-		005F0501.D	4
	6		0.08 FN09181807-	-	1.0000	006F0601.D	4
	7		0.08 FN09181807-	-		007F0701.D	4
	8		C2020-0757-1-A	-		008F0801.D	4
	9		C2020-0757-1-B	-	2.0000	009F0901.D	4
	10		C2020-0771-1-A	-	2.0000	010F1001.D	4
	11		C2020-0771-1-B	-	1.0000	011F1101.D	4
	12		C2020-0772-1-A	-	1.0000	012F1201.D	2
13			C2020-0772-1-B	-	1.0000	013F1301.D	2
14			C2020-0793-1-A	=		014F1401.D	2
15			C2020-0793-1-B	=		015F1501.D	. 2
16			C2020-0793-2-A	-		016F1601.D	2
17	17	1	C2020-0793-2-B	-	1.0000	017F1701.D	2
18	18	1	C2020-0808-1-A	-		018F1801.D	4
19	19	1	C2020-0808-1-B	-		019F1901.D	4
20	20	1	C2020-0836-1-A	-		020F2001.D	4
21	21	1	C2020-0836-1-B	-	1.0000	021F2101.D	4
22	22	1	C2020-0871-1-A	-	1.0000	022F2201.D	4
23	23	1	C2020-0871-1-B	-	1.0000	023F2301.D	4
24	24	1	C2020-0872-1-A	-	1.0000	024F2401.D	4
25	25	1	C2020-0872-1-B	-	1.0000	025F2501.D	4
26	26	1	QC-2(1)-A	-	1.0000	026F2601.D	4
27	27	1	QC-2(1)-B	-	1.0000	027F2701.D	4
28	28	1	C2020-0877-1-A	-	1.0000	028F2801.D	2
29	29	1	C2020-0877-1-B	-	1.0000	029F2901.D	2
30	30	1	C2020-0888-1-A	-	1.0000	030F3001.D	4
31	31	1	C2020-0888-1-B	-	1.0000	031F3101.D	4
32	32	1	C2020-0891-1-A	-	1.0000	032F3201.D	4
33	33	1	C2020-0891-1-B	-	1.0000	033F3301.D	4
34	34	1	C2020-0910-1-A	-	1.0000	034F3401.D	4
35	35	1	C2020-0910-1-B	-	1.0000	035F3501.D	4
36	36	1	C2020-0916-1-A	-	1.0000	036F3601.D	2
37	37	1	C2020-0916-1-B	-	1.0000	037F3701.D	2
38	38	1	QC-1(1)-A	-	1.0000	038F3801.D	4
39	39	1	QC-1(1)-B	-	1.0000	039F3901.D	4
40	40	1	QC-2(1)-A	-	1.0000	040F4001.D	4
41	41	1	QC-2(1)-B	-	1.0000	041F4101.D	4
42	42	1	ISTD BLANK-2	-	1.0000	042F4201.D	2
43	43	1	water-2	-	1.0000	043F4301.D	0
44	44	1	0.05 CHECK	-	1.0000	044F4401.D	4
45	45	1	0.100 CHECK	-	1.0000	045F4501.D	4
46	46	1	0.200 CHECK	-	1.0000	046F4601.D	4

Sequence File C:\Chem32\1\TEMP\AESEQ\QS_17.05.2020_12.22.54\5-17-2020.S

Run	Location	Inj	Samp	ole Name	Sample Amt	Multip.*	File name	Cal	#
#		#			[g/100cc]	Dilution			Cmp
47	47	1	0.300	CHECK	-	1.0000	047F4701.D		4
48	48	1	0.500	CHECK	_	1.0000	048F4801.D		4

Overview Table

1	
-	V
	1
	//

```
Area Rsp.Factor Ref ISTD # Compound
  RT Sig Lvl Amount
            [q/100cc]
1.06794 9.36380e-1 No No 2 Difluoroethane
             1.00000
             1.00000
                       5.00000 2.00000e-1 No No 1 Difluoroethane
 2.000 1 1
 2.494 1 1
             1.00000
                       3.69669 2.70512e-1 No No 1 Methanol
 2.772 1 1
                       3.19311 3.13174e-1 No
                                           No 1 Acetaldehyde
             1.00000
 2.797 2 1
             1.00000
                       3.10575 3.21983e-1 No
                                           No 2 Acetaldehyde
                      8.96129 5.57955e-3 No No 1 Ethanol
 3.108 1 1 5.00000e-2
         2 1.00000e-1 18.48170 5.41076e-3
         3 2.00000e-1 36.29431 5.51051e-3
         4 3.00000e-1
                      54.88569 5.46591e-3
         5 5.00000e-1 90.81027 5.50599e-3
            1.00000
                     4.26062 2.34707e-1 No No 2 Methanol
 3.211 2 1
                     9.73055 1.02769e-1 No No 1 Isopropyl alcohol
 3.715 1 1
             1.00000
                     8.79152 5.68730e-3 No No 2 Ethanol
 4.180 2 1 5.00000e-2
                      18.36772 5.44434e-3
         2 1.00000e-1
         3 2.00000e-1 36.14946 5.53259e-3
         4 3.00000e-1 54.91810 5.46268e-3
                    91.08638 5.48929e-3
         5 5.00000e-1
                    6.49940 1.53860e-1 No No 1 Acetone
             1.00000
 4.530 1
        1
 4.549 2 1
             1.00000
                     6.89301 1.45075e-1 No No 2 Acetone
 4.870 2 1
             1.00000 10.70642 9.34019e-2 No No 2 Isopropyl alcohol
                    90.23399 1.10823e-2 No Yes 1 n-Propanol
 4.942 1
         1
             1.00000
             1.00000 93.27819 1.07206e-2
         2
         3
             1.00000 92.39086 1.08236e-2
             1.00000 92.26163 1.08387e-2
         4
             1.00000
                      92.17155 1.08493e-2
 7.620 2 1
             1.00000 87.74480 1.13967e-2 No Yes 2 n-Propanol
         2
             1.00000 90.87115 1.10046e-2
                    89.80752 1.11349e-2
         3
             1.00000
             1.00000
                      89.67657 1.11512e-2
                      89.29379 1.11990e-2
             1.00000
                       Peak Sum Table
                         ______
***No Entries in table***
  ______
                     Calibration Curves
______
Area Ratio
                              Difluoroethane at exp. RT: 1.977
  0.012
                              FID2 B, Back Signal
                              Correlation:
                                                  1.00000
  0.01
                              Residual Std. Dev.:
                                                  0.00000
  800.0
                              Formula: y = mx
                                          1.21710e-2
                                   m:
  0.006
                                   x: Amount Ratio
  0.004
                                   y: Area Ratio
  0.002
               0.5
              Amount Ratio
```


Difluoroethane at exp. RT: 2.000 FID1 A, Front Signal Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

m: 5.54115e-2 x: Amount Ratio

y: Area Ratio

Methanol at exp. RT: 2.494 FID1 A, Front Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

m: 4.09679e-2

x: Amount Ratio

y: Area Ratio

Acetaldehyde at exp. RT: 2.772

FID1 A, Front Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

m: 3.53870e-2

x: Amount Ratio

y: Area Ratio

Acetaldehyde at exp. RT: 2.797

FID2 B, Back Signal

Correlation: 1.00000

Residual Std. Dev.: 0.00000

Formula: y = mx

m: 3.53953e-2

x: Amount Ratio

y: Area Ratio

Ethanol at exp. RT: 3.108 FID1 A, Front Signal

1.00000 Correlation: 0.00192

Residual Std. Dev.:

Formula: y = mx

1.97307 x: Amount Ratio

y: Area Ratio

Methanol at exp. RT: 3.211 FID2 B, Back Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

4.85570e-2 x: Amount Ratio

y: Area Ratio

Isopropyl alcohol at exp. RT: 3.715

FID1 A, Front Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

1.07837e-1

x: Amount Ratio

y: Area Ratio

Ethanol at exp. RT: 4.180

FID2 B, Back Signal

0.99999 Correlation:

Residual Std. Dev.: 0.00288 .

Formula: y = mx

2.03690

x: Amount Ratio

y: Area Ratio

Acetone at exp. RT: 4.530 FID1 A, Front Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

7.20283e-2 m: x: Amount Ratio

y: Area Ratio

Acetone at exp. RT: 4.549 FID2 B, Back Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx

7.85575e-2 m:

x: Amount Ratio

y: Area Ratio

Isopropyl alcohol at exp. RT: 4.870

FID2 B, Back Signal

Correlation: 1.00000 0.00000

Residual Std. Dev.:

Formula: y = mx

1.22018e-1 m:

x: Amount Ratio

y: Area Ratio

n-Propanol at exp. RT: 4.942

FID1 A, Front Signal

1.00000 Correlation:

Residual Std. Dev.: 0.00000

Formula: y = mx

1.00000 m:

x: Amount Ratio

y: Area Ratio

n-Propanol at exp. RT: 7.620

FID2 B, Back Signal Correlation:

1.00000

0.00000

Residual Std. Dev.:

Formula: y = mx

1.00000

x: Amount Ratio

y: Area Ratio

Sample Summary

Sequence table: C:\Chem32\1\TEMP\AESEQ\QS_17.05.2020_10.37.01\5-17-20cal.S

Data directory path: C:\Chem32\1\Data\5-17-20calJJ

Logbook: C:\Chem32\1\Data\5-17-20calJJ\5-17-20cal.LOG

Sequence start: 5/17/2020 10:50:43 AM

Sequence Operator: SYSTEM Operator: SYSTEM

Method file name: C:\CHEM32\1\METHODS\ALCOHOL.M

Run #	Location	Inj #	Sample Name	Sample Amt [g/100cc]	Multip.* Dilution	File name	Ca.	L # Cmp
								-
1	1	1	WATER	_	1.0000	001F0101.D		0
2	2	1	0.05	-	1.0000	002F0201.D	*	4
3	3	1	0.100	-	1.0000	003F0301.D	*	4
4	4	1	0.200	-	1.0000	004F0401.D	*	4
5	5	1	0.300	-	1.0000	005F0501.D	*	4
6	6	1	0.500	-	1.0000	006F0601.D	*	4
7	7	1	blank	-	1.0000	007F0701.D		2

Sample Name : WATER

Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M
Acq. Instrument: CN10742044-IT00725005

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column 1	L: 0	.00000	0.0000	g/100cc
2.	Ethanol	Column 2	2: 0	.00000	0.0000	g/100cc
3.	n-Propanol	Column 1	L: 0	.00000	0.0000	g/100cc
4.	n-Propanol	Column 2	2: 0	.00000	0.0000	g/100cc

Sample Name : 0.05

Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column			Area	Amount	Units
1.	Ethanol	Column	1:	8.	.96129	0.0503	g/100cc
2.	Ethanol	Column	2:	8.	.79152	0.0492	g/100cc
3.	n-Propanol	Column	1:	90.	.23399	1.0000	g/100cc
4	n-Propanol	Column	2:	87.	74480	1.0000	g/100cc

Sample Name : 0.100

Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	18.48170	0.1004	g/100cc
2.	Ethanol	Column	2:	18.36772	0.0992	g/100cc
3.	n-Propanol	Column	1:	93.27819	1.0000	g/100cc
4.	n-Propanol	Column	2:	90.87115	1.0000	g/100cc

Sample Name

0.200

Laboratory : Injection Date :

Coeur d' Alene May 17, 2020

Method

ALCOHOL.M

Acq. Instrument:

CN10742044-IT00725005

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	36.29431	0.1991	g/100cc
2.	Ethanol	Column	2:	36.14946	0.1976	g/100cc
3.	n-Propanol	Column	1:	92.39086	1.0000	g/100cc
4.	n-Propanol	Column	2:	89.80752	1.0000	g/100cc

Sample Name : 0.300

Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	54.88569	0.3015	g/100cc
2.	Ethanol	Column 2:	54.91810	0.3007	g/100cc
3.	n-Propanol	Column 1:	92.26163	1.0000	g/100cc
4.	n-Propanol	Column 2:	89.67657	1.0000	g/100cc

Sample Name : 0.500

Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	90.81027	0.4993	g/100cc
2.	Ethanol	Column	2:	91.08638	0.5008	g/100cc
3.	n-Propanol	Column	1:	92.17155	1.0000	g/100cc
4.	n-Propanol	Column	2:	89.29379	1.0000	g/100cc

Sample Name : blank

Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	0.00000	0.0000	g/100cc
2.	Ethanol	Column	2:	0.00000	0.0000	g/100cc
3.	n-Propanol	Column	1:	71.01272	1.0000	g/100cc
4.	n-Propanol	Column	2:	68.93850	1.0000	g/100cc

water-1 Sample Name

Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M
Acq. Instrument: CN10742044-IT00725005

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	0.00000	0.0000	g/100cc
2.	Ethanol	Column 2:	0.00000	0.0000	g/100cc
3.	n-Propanol	Column 1:	0.00000	0.0000	g/100cc
4.	n-Propanol	Column 2:	0.00000	0.0000	g/100cc

Sample Name : VOL MIX FN-06041502

Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	35.54260	0.2239	g/100cc
2.	Ethanol	Column	2:	35.43030	0.2222	g/100cc
3.	n-Propanol	Column	1:	80.44317	1.0000	g/100cc
4.	n-Propanol	Column	2:	78.28680	1.0000	g/100cc

ISTD BLANK-1 Sample Name : Laboratory Coeur d' Alene Injection Date: May 17, 2020
Method: ALCOHOL.M
Acq. Instrument: CN10742044-IT00725005

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	0.0000	0.0000	g/100cc
2.	Ethanol	Column	2:	0.00000	0.0000	g/100cc
3.	n-Propanol	Column	1:	83.24142	1.0000	g/100cc
4.	n-Propanol	Column	2:	81.45840	1.0000	g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory	No.:	OC-1	(1)
Littour	1 1000	X -	(-)

Analysis Date(s): 17 May 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.0774	0.0770	0.0004	0.0772	0.0007	0.0768
(g/100cc)	0.0770	0.0761	0.0009	0.0765	0.0007	0.0768

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.076	0.072	0.080	0.004	

	Reported Result	
•	0.076	

Page: 1 of 1

Calibration and control data are stored centrally.

Revision: 2

Issue Date: 12/23/2019

Issuing Auțhority: Quality Manager

Sample Name : QC-1(1)-A
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	13.92392	0.0774	g/100cc
2.	Ethanol	Column 2:	13.97892	0.0770	g/100cc
3.	n-Propanol	Column 1:	91.17107	1.0000	g/100cc
4.	n-Propanol	Column 2:	89.09113	1.0000	g/100cc

Sample Name : QC-1(1)-B
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	. Units
					/100
1.	Ethanol	Column 1:	14.02260	0.0770	g/100cc
2.	Ethanol	Column 2:	14.00550	0.0761	g/100cc
3.	n-Propanol	Column 1:	92.27897	1.0000	g/100cc
4.	n-Propanol	Column 2:	90.38429	1.0000	g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Analysis Date(s): 17 May 2020 Laboratory No.: 0.08 FN09181807-A

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.0817	0.0809	0.0008	0.0813	0.0003	0.0811
(g/100cc)	0.0816	0.0805	0.0011	0.0810	0.0003	0.0811

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.081	0.076	0.086	0.005	

Reported Result	
0.081	

Page: 1 of 1

Calibration and control data are stored centrally.

Revision: 2

Issue Date: 12/23/2019

Issuing Authority: Quality Manager

Sample Name : 0.08 FN09181807-A Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column :	1:	14.47303	0.0817	g/100cc
2.	Ethanol	Column :	2:	14.43563	0.0809	g/100cc
3.	n-Propanol	Column :	1:	89.80374	1.0000	g/100cc
4.	n-Propanol	Column :	2:	87.63979	1.0000	g/100cc

Sample Name : 0.08 FN09181807-B Laboratory : Coeur d' Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column			Area	Amoun	t	Units
1.	Ethanol	Column	1:	14.	62971	0.0816		g/100cc
2.	Ethanol	Column	2:	14.	52552	0.0805		g/100cc
3.	n-Propanol	Column	1:	90.	90074	1.0000		g/100cc
4.	n-Propanol	Column	2:	88.	60638	1.0000		g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC-2(1)

Analysis Date(s): 17 May 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.1997	0.1979	0.0018	0.1988	0.0016	0.1980
(g/100cc)	0.1977	0.1967	0.0010	0.1972	0.0010	0.1980

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.198	0.188	0.208	0.010	

Reported Result	
0.198	

Page: 1 of 1

Calibration and control data are stored centrally.

Revision: 2

Issue Date: 12/23/2019

Issuing Authority: Quality Manager

Sample Name : QC-2(1)-A Laboratory : Coeur d'Alene Injection Date : May 17, 2020 Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	36.71295	0.1997	g/100cc
2.	Ethanol	Column	2:	36.64224	0.1979	g/100cc
3.	n-Propanol	Column	1:	93.16415	1.0000	g/100cc
4.	n-Propanol	Column	2:	90.88364	1.0000	g/100cc

Sample Name : QC-2(1)-B
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	36.29335	0.1977	g/100cc
2.	Ethanol	Column	2:	36.34470	0.1967	g/100cc
3.	n-Propanol	Column	1:	93.03001	1.0000	g/100cc
4.	n-Propanol	Column	2:	90.72159	1.0000	g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC-1(1)

Analysis Date(s): 17 May 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.0779	0.0769	0.0010	0.0774	0.0007	0.0777
(g/100cc)	0.0786	0.0777	0.0009	0.0781	0.0007	0.0777

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.077	0.073	0.081	0.004	

Reported Result	,
0.077	

Page: 1 of 1

Calibration and control data are stored centrally.

Revision: 2

Issue Date: 12/23/2019

Issuing Authority: Quality Manager

Sample Name : QC-1(1)-A
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	14.26898	0.0779	g/100cc
2.	Ethanol	Column	2:	14.19210	0.0769	g/100cc
3.	n-Propanol	Column	1:	92.79623	1.0000	g/100cc
4.	n-Propanol	Column	2:	90.59156	1.0000	g/100cc

Sample Name : QC-1(1)-B
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	14.70954	0.0786	g/100cc
2.	Ethanol	Column	2:	14.67007	0.0777	g/100cc
3.	n-Propanol	Column	1:	94.79135	1.0000	g/100cc
4.	n-Propanol	Column	2:	92.64909	1.0000	g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC-2(1) Analysis Date(s): 17 May 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.2003	0.1994	0.0009	0.1998	0.0003	0.1996
(g/100cc)	0.2002	0.1988	0.0014	0.1995	0.0003	0.1990

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.199	0.189	0.209	0.010	

Reported Result	;
0.199	

Calibration and control data are stored centrally.

Revision: 2

Issue Date: 12/23/2019

Issuing Authority: Quality Manager

Sample Name : QC-2(1)-A
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		j	Area	Am	ount	Units
1.	Ethanol	Column	1:	36.	58096	0.2	003	g/100cc
2.	Ethanol	Column	2:	36.	64567	0.1	994	g/100cc
3.	n-Propanol	Column	1:	92.	55772	1.0	000	g/100cc
4.	n-Propanol	Column	2:	90.	20654	1.0	000	g/100cc

Sample Name : QC-2(1)-B
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	36.41995	0.2002	g/100cc
2.	Ethanol	Column	2:	36.39434	0.1988	g/100cc
3.	n-Propanol	Column	1:	92.18412	1.0000	g/100cc
4.	n-Propanol	Column	2:	89.87830	1.0000	g/100cc

Sample Name : ISTD BLANK-2
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	0.00000	0.0000	g/100cc
2.	Ethanol	Column	2:	0.00000	0.0000	g/100cc
3.	n-Propanol	Column	1:	70.60184	1.0000	g/100cc
4.	n-Propanol	Column	2:	68.50423	1.0000	g/100cc

Sample Name water-2 :

Laboratory : Coeur d' Alene May 17, 2020 ALCOHOL.M CN10742044-IT00725005 Injection Date : Method :

Acq. Instrument:

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	0.00000	0.0000	g/100cc
2.	Ethanol	Column	2:	0.0000	0.0000	g/100cc
3.	n-Propanol	Column	1:	0.0000	0.0000	.g/100cc
4.	n-Propanol	Column	2:	0.0000	0.0000	g/100cc

Sample Name : 0.05 CHECK
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	9.15423	0.0514	g/100cc
2.	Ethanol	Column	2:	9.14250	0.0510	g/100cc
3.	n-Propanol	Column	1:	90.19044	1.0000	g/100cc
4.	n-Propanol	Column	2:	88.06733	1.0000	g/100cc

Sample Name : 0.100 CHECK
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	18.50255	0.1032	g/100cc
2.	Ethanol	Column	2:	18.45708	0.1020	g/100cc
3.	n-Propanol	Column	1:	90.84614	1.0000	g/100cc
4.	n-Propanol	Column	2:	88.87326	1.0000	g/100cc

Sample Name : 0.200 CHECK
Laboratory : Coeur d'Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	36.72697	0.2061	g/100cc
2.	Ethanol	Column	2:	36.75856	0.2053	g/100cc
3.	n-Propanol	Column	1:	90.30102	1.0000	g/100cc
4.	n-Propanol	Column	2:	87.90143	1.0000	g/100cc

Sample Name : 0.300 CHECK
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	55.65417	0.3093	g/100cc
2.	Ethanol	Column	2:	55.74089	0.3085	g/100cc
3.	n-Propanol	Column	1:	91.19943	1.0000	g/100cc
4.	n-Propanol	Column	2:	88.69510	1.0000	g/100cc

Sample Name : 0.500 CHECK
Laboratory : Coeur d' Alene
Injection Date : May 17, 2020
Method : ALCOHOL.M

#	Compound	Column		Area	Amount	Units
1.	Ethanol	Column	1:	93.32396	0.5143	g/100cc
2.	Ethanol	Column	2:	93.63182	0.5148	g/100cc
3.	n-Propanol	Column	1:	91.96426	1.0000	g/100cc
4.	n-Propanol	Column	2:	89.28943	1.0000	g/100cc

